General Information 
Course Overview. Patterns within the set of natural numbers have enticed mathematicians for well over two millennia, making Number Theory one of the oldest branches of mathematics. Still, numerous number theoretic problems remain open to this day, and many of these problems continue to entice the mathematical masses. In this course we will explore some of the classical problems in number theory, focusing largely on open problems and partial results related to these problems. Our approach will be somewhat different from most upper level math courses in that the second half of the semester will be devoted to the reading and presenting of research papers. (That is, students will be responsible for reading and presenting these papers to one another.) We will need to understand the basic notions of number theory before tackling this feat, however, so we will spend the first half of the semester working through Chapters 118 of Joseph Silverman's textbook A Friendly Introduction to Number Theory. In doing so, we will cover many of the topics typically included in a standard number theory course: divisibility, primes and their distribution, congruences, arithmetic functions, RSA cryptography and more.  
The Textbook.
Joseph H. Silverman, A Friendly Introduction to Number Theory
3rd ed., Pearson Prentice Hall. You might be able to find the book at
a cheaper price online by visiting amazon.com: 

Grades. Your grade will be based on your performance on daily homework, your paper presentations (which includes a written paper), a midterm, and a final exam. Each will be weighted as follows.


Daily Homework. Throughout the first half of the semester, you will be given daily homework assignments that will consist largely of problemsolving and proofwriting. Sometimes I will collect and grade this homework, and other times students will present their work in class. Some of the exercises will come directly from the text and others will be written by your professor. Your homework during the latter half of the semester will be significantly different in that you will be spending your time reading and understanding the research papers presented by your classmates. NOTE: You will be expected to read each research paper prior to the day it is to be presented.


Paper Presentations. During weeks 1014, students will read and present papers to one another. The reading list will be determined by both the students (to ensure that there is ample student interest in the topics covered) and the instructor (to ensure that the papers chosen are accessible to the students). The Paper Presentation will have three components:
Paper Proposal and Outline: Written Paper: Paper Presentation: Please feel free to get advice from your professor at every step along the way on this assignment. Most of you will be reading and presenting mathematical research papers for the first time. You will likely have a lot of questions. Be assured that you will learn a great deal during this experience, and what you learn will prove helpful to your future work (e.g., students from my last offering of this class tell me they found this assignment to be very helpful to them when it came time to complete their senior exercise in mathematics.) 

The Midterm. The midterm exam will have two components: an inclass component and a takehome component. The inclass component will be held on Thursday, October 6. The takehome component will be distributed on the same day and will be due at the beginning of class on Thursday, October 13. You will choose a 48hour period between the end of class on October 6 and the beginning of class on October 13 to complete the exam. (Note: October 89 are Reading Days. Plan accordingly.) Both components of the midterm will cover the material discussed during the first six weeks of the semester (see the syllabus for Block I).  
The Final Exam. The final exam will be takehome and cumulative. It will be distributed on December 13 (the last day of class) and will be due on December 19 at 8:30am (as dictated by the College's Final Exam Schedule.) You will choose a consecutive 72hour period during this time frame to complete the exam.  
Academic Honesty. In general, the rules set forth in the 20052006 Course of Study apply. Presenting the work of others as your own is strictly prohibited. In the case of homework, you may collaborate with others in discussing how a problem may be solved, but your writeup must be your own. If you submit work that contains the ideas or words of someone else, then you must provide proper citation. Assistance can not be given nor received (other than by the instructor) on any quiz, or exam associated with this course, except where explicitly allowed by the instructor. In the case of a group assignment, all members of the group should contribute equally to writing the final product. And every member of the group is responsible for the content of the entire paper, not just the section(s) that are written by that person. Don't put your name on a paper written by others. For further information, consult your instructor.  
Learning Disabilities. If you have a disability which requires an accommodation in this class, please feel free to discuss your concerns with me, but you should also consult Ms. Erin Salva, (Coordinator of Disability Services; Office of the Dean for Academic Advising, PBX 5453) as soon as possible. Ms. Salva (in consultation with the L.E.A.R.N. committee) has the authority and the expertise to decide on the accommodations that are proper for your disability. Though I am happy to help you in any way I can, I cannot make any accommodations for learning (or other) disabilities without proper authorization from Ms. Salva. 
Back to the Kenyon Homepage  Back to the Math Homepage  Back to JAH's Homepage  Back to JAH's Number Theory Homepage 