Subgroups Generated by Subsets

A cyclic subgroup of a group G is a subgroup of the form $H=\langle g\rangle=\left\{g^{k} \mid g \in \mathbf{Z}\right\}$, where g is an element of G. Recall that such a group can be described as the smallest subgroup of G containing g. That is,

$$
\langle g\rangle=\underset{\substack{g \in K \\ K \leq G}}{\cap} K
$$

In today's lab we wish to generalize these ideas. In particular, we will be interested in answering the following questions:

What is the smallest subgroup of a group G containing elements $g_{1}, g_{2}, \ldots, g_{n} \in G$? How can you describe an arbitrary element in this subgroup?

Or, more generally, What is the smallest subgroup of a group G containing a subset $S \subseteq G$ and how can you describe an arbitrary element in this subgroup?

Definition. Let S be a subset of a group G. Then the subgroup of \boldsymbol{G} generated by \boldsymbol{S}, denoted by $\langle S\rangle$, is defined to be the intersection

$$
\langle S\rangle=\bigcap_{\substack{S \subseteq K \\ K \leq G}} K
$$

Note: If the set S in the definition above happens to be a finite set, say $S=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, then we normally write $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$ instead of $\left\langle\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}\right\rangle$ when speaking about this subgroup.

Question 1. Explain why the definition above ensures that $\langle S\rangle$ is the smallest subgroup of G containing S.

Question 2. The subgroup generated by S could have been defined a second way, as the set of all possible products of elements in S. Indeed, if g_{l} and g_{2} are two elements in a subgroup of G then closure implies that the products $\left(g_{1}\right)^{2},\left(g_{2}\right)^{2},\left(g_{1} g_{2}\right)^{2},\left(g_{1} g_{2}\right)^{2}\left(g_{1}\right)^{3}$ $\left(g_{1} g_{2}\right)^{2}\left(g_{1}\right)^{3}\left(g_{1} g_{2}\right)^{7}\left(g_{2}\right)^{12}$, etc.,... must also be in the subgroup.
Define the closure of S to be the set:

$$
\bar{S}=\left\{s_{1}^{\alpha_{1}} s_{2}^{\alpha_{2}} \cdots s_{n}^{\alpha_{n}} \mid n \in Z, n \geq 0 \text { and } s_{i} \in S, \alpha_{i}= \pm 1 \text { for each } 1 \leq i \leq n\right\}
$$

and prove that $\langle S\rangle=\overline{\mathrm{S}}$.

Describing $\langle S\rangle$ as the closure of S is particularly helpful when you want to be able to describe an arbitrary element in $\langle S\rangle$. The second definition is also more easily incorporated into computer programs such as gap.

Question 2. Let's look at some examples in gap. Type in the commands below to define the subgroup S_{5} generated by the two cycle $(1,2)$ and the three cycle $(1,2,3)$.

```
gap> G:=SymmetricGroup (5);
gap> a:=(1, 2); b:=(1, 2, 3);
gap> H1:=Subgroup(G,[a, b]);
gap> Elements(H1);
gap> Size(H1);
```

Using gap's output, classify the group $\langle(1,2),(1,2,3)\rangle$.

Question 3. Use gap to classify each of the subgroups of S_{5} listed below.
a.) $\mathrm{H} 2=\langle(1,2),(2,3,4)\rangle$
b.) $\mathrm{H} 3=\langle(1,2),(3,4,5)\rangle$
c.) $\mathrm{H} 4=\langle(1,2),(1,2,3,4)\rangle$
d.) $\mathrm{H} 5=\langle(1,2),(2,3,4,5)\rangle$

Experiment with other pairs of cycles until you are able to answer the questions that follow.
e.) Given a 2-cycle (a, b) and a 3-cycle (c, d, e) in S_{5}, when is $S_{5}=\langle(a, b),(c, d, e)\rangle$?
f.) For which cycles, (a, b) and (c, d, e, f) in S_{5}, is $S_{5}=\langle(a, b),(c, d, e, f)\rangle$?
g.) For which cycles, (a, b) and (c, d, e, f, g) in S_{5}, is $S_{5}=\langle(a, b),(c, d, e, f, g)\rangle$?

Question 4. Classify the subgroups of S_{5} listed below.
a.) $\mathrm{H} 6=\langle(1,2,3),(2,3,4)\rangle$
b.) $\mathrm{H} 7=\langle(1,2,3),(3,4,5)\rangle$
c.) $\mathrm{H} 8=\langle(1,2,3),(2,3,4),(3,4,5)\rangle$
e.) Can S_{5} be generated by 3-cycles? Why or why not?

Question 5. Note that for any group G, we can certainly say that G is generated by all elements in G. That is, $\langle\boldsymbol{G}\rangle=G$. However, in practice we are interested in finding a small set of generators for a group. If G is cyclic, for example, then the smallest set will contain just one element - the generator. In general, it is difficult to find a smallest set of generators for a group.

Show that the symmetric group, S_{n}, can be generated by just two generators. Then explain why any generating set of S_{n} must contain at least two elements. (Hence a minimal generating set of S_{n} has order 2.)

