Subgroups Generated by Subsets

A cyclic subgroup of a group *G* is a subgroup of the form $H = \langle g \rangle = \{g^k | g \in \mathbb{Z}\}$, where *g* is an element of *G*. Recall that such a group can be described as the smallest subgroup of *G* containing *g*. That is,

$$\langle g \rangle = \bigcap_{\substack{g \in K \\ K \leq G}} K$$

In today's lab we wish to generalize these ideas. In particular, we will be interested in answering the following questions:

What is the smallest subgroup of a group G containing elements $g_1, g_2, ..., g_n \in G$? How can you describe an arbitrary element in this subgroup?

Or, more generally, What is the smallest subgroup of a group G containing a subset $S \subseteq G$ and how can you describe an arbitrary element in this subgroup?

Definition. Let *S* be a subset of a group *G*. Then the **subgroup of** *G* **generated by** *S*, denoted by $\langle S \rangle$, is defined to be the intersection

$$\langle S \rangle = \bigcap_{\substack{S \subseteq K \\ K \leq G}} K$$

Note: If the set *S* in the definition above happens to be a finite set, say $S = \{g_1, g_2, ..., g_n\}$, then we normally write $\langle g_1, g_2, ..., g_n \rangle$ instead of $\langle \{g_1, g_2, ..., g_n\} \rangle$ when speaking about this subgroup.

Question 1. Explain why the definition above ensures that $\langle S \rangle$ is the smallest subgroup of *G* containing *S*.

Question 2. The subgroup generated by *S* could have been defined a second way, as the set of all possible products of elements in S. Indeed, if g_1 and g_2 are two elements in a subgroup of *G* then closure implies that the products $(g_1)^2$, $(g_2)^2$, $(g_1g_2)^2$, $(g_1g_2)^2(g_1)^3$ $(g_1g_2)^2(g_1)^3(g_1g_2)^7(g_2)^{12}$, etc.,... must also be in the subgroup. Define the **closure of** *S* to be the set:

 $\overline{S} = \{s_1^{\alpha_1} s_2^{\alpha_2} \cdots s_n^{\alpha_n} | n \in \mathbb{Z}, n \ge 0 \text{ and } s_i \in S, \alpha_i = \pm 1 \text{ for each } 1 \le i \le n\}$ and prove that $\langle S \rangle = \overline{S}$. Describing $\langle S \rangle$ as the closure of *S* is particularly helpful when you want to be able to describe an arbitrary element in $\langle S \rangle$. The second definition is also more easily incorporated into computer programs such as **gap**.

Question 2. Let's look at some examples in **gap**. Type in the commands below to define the subgroup S_5 generated by the two cycle (1, 2) and the three cycle (1, 2, 3).

```
gap> G:=SymmetricGroup(5);
gap> a:=(1, 2); b:=(1, 2, 3);
gap> H1:=Subgroup(G,[a, b]);
gap> Elements(H1);
gap> Size(H1);
```

Using **gap**'s output, classify the group $\langle (1,2), (1,2,3) \rangle$.

Question 3. Use gap to classify each of the subgroups of S_5 listed below.

a.) H2 = $\langle (1,2), (2,3,4) \rangle$

- b.) H3 = $\langle (1,2), (3,4,5) \rangle$
- c.) H4 = $\langle (1,2), (1,2,3,4) \rangle$
- d.) H5 = $\langle (1,2), (2,3,4,5) \rangle$

Experiment with other pairs of cycles until you are able to answer the questions that follow.

e.) Given a 2-cycle (a, b) and a 3-cycle (c, d, e) in S_5 , when is $S_5 = \langle (a, b), (c, d, e) \rangle$?

f.) For which cycles, (a, b) and (c, d, e, f) in S_5 , is $S_5 = \langle (a, b), (c, d, e, f) \rangle$?

g.) For which cycles, (a, b) and (c, d, e, f, g) in S_5 , is $S_5 = \langle (a, b), (c, d, e, f, g) \rangle$? **Question 4.** Classify the subgroups of S_5 listed below. © Judy Holdener, July 27, 2001

a.) H6 = $\langle (1, 2, 3), (2, 3, 4) \rangle$

b.) H7 = $\langle (1, 2, 3), (3, 4, 5) \rangle$

- c.) H8 = $\langle (1, 2, 3), (2, 3, 4), (3, 4, 5) \rangle$
- e.) Can S₅ be generated by 3-cycles? Why or why not?

Question 5. Note that for any group *G*, we can certainly say that *G* is generated by all elements in *G*. That is, $\langle G \rangle = G$. However, in practice we are interested in finding a small set of generators for a group. If *G* is cyclic, for example, then the smallest set will contain just one element – the generator. In general, it is difficult to find a smallest set of generators for a group.

Show that the symmetric group, S_n , can be generated by just two generators. Then explain why any generating set of S_n must contain at least two elements. (Hence a minimal generating set of S_n has order 2.)