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Abstract. In this paper, we reveal a remarkable connection between the
Thue-Morse sequence and the Koch snowflake. Using turtle geometry and
polygon maps, we realize the Thue-Morse sequence as the limit of polygonal
curves in the plane. We then prove that a sequence of such curves converges
to the Koch snowflake in the Hausdorff metric. In the final section we consider
generalized Thue-Morse sequences and provide a characterization of those that
encode curves converging to the Koch snowflake.

1. Introduction

The Thue-Morse sequence and the Koch snowflake have much in common. Both
are defined iteratively. Both exhibit properties of self-similarity. Both first appeared
in the early 1900’s (the Koch snowflake in 1906 and the Thue-Morse sequence in
1912). And both continue to appear frequently - yet independently - in popular
mathematical writing today. In this paper, we will show that the commonality
between these two famous objects is deeper yet. Indeed, by realizing the Thue-
Morse sequence geometrically as the limit of polygonal curves in the plane, we will
show that the connection between the Thue-Morse sequence and the Koch snowflake
is much stronger than one might expect.

The Thue-Morse sequence is a two symbol sequence typically defined by iterating
a substitution map σ. Given the alphabet A = {a, b}, define the morphism σ : A∗ →
A∗ by setting σ(a) = ab and σ(b) = ba. If σ0 = a, we see that σ generates the
sequence of words:

{σn(a)}n≥0 = a, ab, abba, abbabaab, abbabaabbaababba, ...

This sequence converges to what is commonly known as the Thue-Morse sequence:

t = lim
n→∞

σn(a) = abbabaabbaababbabaababbaabbabaab...

Of course, there is nothing special about the symbols a and b, and in this article we
choose to use the alphabet Σ = {F,L}, where F and L represent commands for a
turtle in the plane (in the sense of the turtle geometry developed in the early 1980’s
[1].) The symbol F represents a forward motion of the turtle in the plane by one
unit and L a counterclockwise rotation of the turtle by the fixed angle θ = π/3.

Definition 1.0.1. Let Σ = {F,L}. Then the Thue-Morse turtle programs of degree
n, denoted by TMn and TMn, are defined to be the following words in Σ∗

TMn = σn(F ) and TMn = σn(L)
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The trajectories encoded by the Thue-Morse turtle programs turn out to be
surprisingly interesting. Figures 1 and 2 below show the results of the Thue-Morse
turtle programs of degrees 4 through 10.
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Figure 1. Thue-Morse turtle programs of degrees 4 through 7
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Figure 2. Thue-Morse turtle programs of degrees 8 through 10

Indeed, the trajectories corresponding to the even terms of the Thue-Morse se-
quence are starting to resemble the familiar Koch snowflake! Skeptical? Consider
TM14.

Figure 3. The Thue-Morse turtle program of degree 14

The primary purpose of this paper is to examine the sequence of curves encoded
by Thue-Morse turtle programs {TM2n}. In subsections 3.1-3.3, we use turtle ge-
ometry and polygon maps to realize the programs TM2n as polygonal curves in
the plane. We then present a few useful preliminary results involving computa-
tions in the Hausdorff metric (subsection 3.4 and 3.5). In our two main results -
Convergence Theorems I and II - we prove that a sequence of Thue-Morse turtle
trajectories does, in fact, converge to the Koch Snowflake. In the final section,
we consider possible generalizations of Thue-Morse turtle programs, exploring the
existence of other iterative turtle programs that produce curves converging to the
Koch snowflake.
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2. Two Famous Mathematical Objects

2.1. The Thue-Morse Sequence. The Norwegian mathematician Axel Thue first
discovered the Thue-Morse sequence in 1912 while studying avoidable patterns in
sequences of symbols [12]. Thue proved that the sequence is overlapfree, meaning
that it contains no substrings of the form wuwuw.) The sequence was later redis-
covered by Marston Morse (1917), who was interested in the aperiodicity of the
sequence [8]. Since the early 1900’s, interest in the Thue-Morse sequence has con-
tinued. In 1944, Morse and Hedlund proved that the sequence is cubefree (meaning
it contains no substrings of the form www) [9], and there have been numerous writ-
ings of late that focus on the many interesting properties exhibited by the sequence
[[3], [7], [6], [10]]. Below we list a few basic properties that are relevant to this pa-
per. The properties, as stated, involve even terms only because it is the even terms
of the Thue-Morse sequence that appear to be converging to the Koch snowflake.

Property 2.1.1. For all n ∈ N, TM2n+2 = TM2nTM2n TM2nTM2n and TM2n+2 =
TM2nTM2nTM2nTM2n.

Note that Property 2.1.1 implies that the even terms of {TMn} are palindromes.
This ensures the bilateral symmetry of the polygonal curves they encode.

Property 2.1.2. Given Ω2k = {TM2k, TM2k} and n ≥ k,

TM2n = σ2n−2k(TM2k) ∈ Ω∗2k and TM2n = σ2n−2k(TM2k) ∈ Ω∗2k

Property 2.1.3. If τ : Σ∗ → Σ∗ is the morphism defined by τ(F ) = L and τ(L) = F ,
then τ(TM2k) = TM2k and τ(TM2k) = TM2k.

Remark 2.1.4. The bar notation, TM2n ≡ σ2n(L), was actually chosen to reflect
Property 2.1.3. In general, if w is a word over a two symbol alphabet {a, b}, then
w denotes the word obtained by exchanging all a’s to b’s and all b’s to a’s [3].

2.2. The Koch Snowflake. Now considered a classical fractal object, the Koch
snowflake was first introduced by Helge von Koch in 1906 [13]. It is constructed
by starting with a line segment of unit length, extracting the middle third and
replacing it with two line segments of length 1/3 (see Figure 4). The process is
continued indefinitely, with the middle third of any line segment at each stage
being replaced with two line segments of length equal to 1/3 of the line segment.

Figure 4. Edge replacement in the Koch snowflake

The Koch snowflake is commonly defined by way of a Lindenmayer system with
initial string F and rewriting rule F → F − F + +F − F , where “+” denotes a
counterclockwise rotation of π/3 radians and “-” a clockwise rotation by the same
amount [11]. The “reflected” rewriting rule F → F + F −−F + F amounts to the
morphism κ : Σ∗ → Σ∗ defined by κ(F ) = FL5FL2FL5F and κ(L) = L, where
Σ∗ is the monoid of words over Σ (the operation being concatenation.) Note that
FL5FL2FL5F can be factored in two ways:
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(1) (FL4)(LFL)(LFL)(L4F )
(2) (FL)(L4FL)(LFL4)(LF )

Defining a = L4FL4 and b = LFL we see that the rewriting rule κ is reminiscent
of σ2, which generates the even terms of the Thue-Morse sequence (in particular,
see Property 2.1.1). For if we assume that L6 is the empty word (representing a
counterclockwise rotation of 2π), then

κ(a) = κ(L4FL4) = L4κ(F )L4 = L4(FL4)(LFL)(LFL)(L4F )L4

= abba = σ2(a)

and
κ(b) = κ(LFL) = Lκ(F )L = L(FL)(L4FL)(LFL4)(LF )L

= L(FL)(L4FL)L6(LFL4)(LF )L
= baab = σ2(b)

Moreover, further iteration of κ will result in the following.

Proposition 2.2.1. Let n ∈ N, and consider the set of all words over Σ subject to
the relation L6 = ε (where ε is the empty word). Then the following two identities
hold true.

(1) κn(L4FL4) = σ2n(L4FL4)
(2) κn(LFL) = σ2n(LFL)

Proof. Proceed by induction. Clearly, κ0(L4FL4) = L4FL4 = σ0(L4FL4) and
κ0(LFL) = LFL = σ0(LFL). Now suppose that (1) and (2) hold for n and
compute:

σ2n+2(L4FL4) = σ2n(L4FL4)σ2n(LFL)σ2n(LFL)σ2n(L4FL4)
= L4κn(F )L4Lκn(F )LLκn(F )LL4κn(F )L4

= L4[κn(F )L5κn(F )L2κn(F )L5κn(F )]L4

= κn+1(L4FL4)

σ2n+2(LFL) = σ2n(LFL)σ2n(L4FL4)σ2n(L4FL4)σ2n(LFL)
= Lκn(F )LL4κn(F )L4L4κn(F )L4Lκn(F )L
= L[κn(F )L5κn(F )L2κn(F )L5κn(F )]L
= κn+1(LFL)

¤

Finally, we note that the trajectories encoded by κ(L4FL4) and κ(LFL) are
simply rotations of that encoded by κ(F ). Hence κ(L4FL4) provides another en-
coding of the Koch snowflake. In light of the previous proposition, this means that
the sequence {σ2n(L4FL4)}n≥1 also encodes the Koch snowflake, and it is this for-
mulation that we will be using in this paper. Moreover, we can replace F in the
rewriting rule with any other turtle sequence that restores the initial heading. For
example, any power of F would work.

3. Preliminaries

3.1. Turtle Geometry and the Position Homomorphism. A turtle program
is defined to be any word over the alphabet Σ = {L, F} where F denotes a forward
motion of the turtle by one unit and L a counterclockwise rotation by some fixed
angle θ. If θ = 2π/N , then the set of all words over Σ subject to the relation
R = {LN = ε} is denoted by Σ∗R. The length of a turtle program, |w|, is the
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number of letters in w. By |w|L, we denote the number of L’s in w, and similarly,
|w|F denotes the number of F ’s.

A turtle state is an ordered pair (~r, v̂) consisting of a position vector ~r ∈ R2,
and a unit vector v̂ describing the turtle’s heading. The basic turtle commands F
and L define certain changes in the turtle’s state; the command F represents the
transformation TF mapping the state (~r, v̂) to the state (~r + v̂, v̂), and L represents
the transformation TL mapping (~r, v̂) to (~r, Rθv̂), where Rθ is the rotation matrix

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
, θ = 2π/N.

For the purposes of this paper, θ will always be fixed at π/3 (and hence R = {L6 =
ε}.)

A string w of F ’s and L’s then describes the general turtle transformation Tw

consisting of compositions of these two basic transformations. Such transformations
Tw can be expressed in the form Tw(~r, v̂) = (~r + Mv̂,Rv̂), where M is a matrix

of the form
[

a −b
b a

]
∈ M2(R) and R = Rk

θ for some positive integer k. As

described in [5], the set of pairs (M,R) ∈ G = M2(R)× 〈Rθ〉 is a group under the
binary operation

(M1, R1)(M2, R2) = (M1 + R1M2, R1R2),

and there is a homomorphism ψ : Σ∗R → G defined by

ψ(w) =




k∑

j=1

mjR

j∑
i=1

ni

θ , R

k∑
i=1

ni

θ




for any w =
k∏

i=1

LniFmi ∈ Σ∗R. The map ψ is useful, because it allows us to compute

the turtle’s position and heading with ease. Indeed, if the turtle starts with the
state (~r, v̂) = (〈0, 0〉, 〈0, 1〉) and follows the string of commands w, then its new
position and heading are π1 ◦ψ(w) · v̂ and π2 ◦ψ(w) · v̂, respectively. In this paper,
we define the position homomorphism g : Σ∗R → R2 as follows, with the assumption
that the turtle’s initial state is always (~r, v̂) = (〈0, 0〉, 〈0, 1〉).
Definition 3.1.1. Given v̂0 = 〈0, 1〉 and the map φ0 : M2(R) → R2 defined by
φ0(M) = M · v̂0, the position homomorphism g : Σ∗R → R2 is defined to be the
composition g = φ0 ◦ π1 ◦ ψ.

g : Σ∗R
ψ→ M2(R)× 〈Rθ〉 π1→ M2(R)

φ0→ R2

It is worth noting that although the position homomorphism furnishes the fi-
nal position of the turtle only, it does retain some information about the turtle’s
heading. In particular, if w = w1w2, and ψ(w1) = (M1, R1), ψ(w2) = (M2, R2),
then

g(w1w2) = π1 ◦ ψ(w1w2) · v̂0

= (M1 + R1 ·M2) · v̂0

= M1 · v̂0 + R1 ·M2 · v̂0

= g(w1) + R1 · g(w2),
and we see that ψ(w1w2) depends on R1 = π2 ◦ ψ(w1). Furthermore, by defining
the multiplication on G = {g(w)|w ∈ Σ∗R} to be g(w1) ¢ g(w2) = g(w1) + π2 ◦
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ψ(w1) · g(w2), we are simply equipping G with the multiplication it has inherited
from G = M2(R) × 〈Rθ〉. The following proposition is easy to check, so we will
state it without proof.

Proposition 3.1.2. The set G = {g(w)|w ∈ Σ∗R} is a group under the binary
operation

g(w1) ¢ g(w2) = g(w1) + π2 ◦ ψ(w1) · g(w2)

and g : Σ∗R → R2 is a homomorphism.

3.2. Thue-Morse Turtle Programs. The goal of the current section is to com-
pute the heading and position of a turtle that has followed the Thue-Morse turtle
programs TM2n and TM2n. The next lemma will be helpful.

Lemma 3.2.1. Let w,w′ ∈ Σ∗R be two words satisfying π1◦ψ(w) = M , π1◦ψ(w′) =
M ′ and π2 ◦ ψ(w) = π2 ◦ ψ(w′) = R2

θ. Then for all integers n ≥ 0,
(1) π2 ◦ ψ(σ2n(w)) = π2 ◦ ψ(σ2n(w′)) = R2

θ.
(2) π1 ◦ ψ(σ2n(w)) = 3n+1

2 ·M − 3n−1
2 ·M ′ and

π1 ◦ ψ(σ2n(w′)) = 3n+1
2 ·M ′ − 3n−1

2 ·M
Proof. We prove (1) by induction. Assuming π2 ◦ψ(w) = π2 ◦ψ(w′) = R2

θ, suppose
π2 ◦ ψ(σ2n(w)) = π2 ◦ ψ(σ2n(w′)) = R2

θ. Then

π2 ◦ ψ(σ2n+2(w)) = π2 ◦ ψ(σ2n(w)σ2n(w′)σ2n(w′)σ2n(w))
= π2 ◦ ψ(σ2n(w)) · (π2 ◦ ψ(σ2n(w′))2 · π2 ◦ ψ(σ2n(w))
= (R2

θ)
4

= R2
θ

To prove (2), apply induction once again. The base case (n=0) follows from the
assumption that π1 ◦ψ(w) = M and π1 ◦ψ(w′) = M ′. Setting Mn = π1 ◦ψ(σ2n(w))
and M ′

n = π1◦ψ(σ2n(w′)) and recalling that θ = π/3 so that R6
θ = I and R2

θ +R4
θ =

−I, we compute:

π1 ◦ ψ(σ2n+2(w)) = π1 ◦ ψ(σ2n(w)σ2n(w′)σ2n(w′)σ2n(w))
= Mn + R2

θ ·M ′
n + R4

θ ·M ′
n + R6

θ ·Mn

= (I + R6
θ) ·Mn + (R2

θ + R4
θ) ·M ′

n

= 2Mn −M ′
n

Assuming Mn = π1 ◦ ψ(σ2n(w)) = 3n+1
2 ·M − 3n−1

2 ·M ′, the above computation
then yields the desired result.

¤

With the previous lemma in hand, we are now ready to compute the exact
position and heading resulting from a Thue-Morse turtle program.

Proposition 3.2.2. For all n ∈ N,
(1) π2 ◦ ψ(TM2n) = π2 ◦ ψ(TM2n) = R2

θ

(2) π1 ◦ ψ(TM2n) = 3−3n−1

2 ·Rθ

(3) π1 ◦ ψ(TM2n) = 3+3n−1

2 ·Rθ

Proof. Let w = TM2 = FLLF and w′ = TM2 = LFFL. Since π2 ◦ ψ(TM2) =
π2 ◦ ψ(TM2) = R2

θ, (1) follows directly from (1) of the previous lemma.
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The proof of (2) follows from the following computation. Let M = π1 ◦ ψ(TM2) =
Rθ and M ′ = π1 ◦ ψ(TM2) = 2Rθ

π1 ◦ ψ(TM2n) = π1 ◦ ψ(σ2n−2(TM2))
= 3n−1+1

2 ·Rθ − 3n−1−1
2 · 2Rθ

= 3−3n−1

2 ·Rθ

The proof of (3) is similar. Let M = π1 ◦ψ(TM2) = 2Rθ and M ′ = π1 ◦ψ(TM2) =
Rθ.

π1 ◦ ψ(TM2n) = π1 ◦ ψ(σ2n−2(TM2))
= 3n−1+1

2 · 2Rθ − 3n−1−1
2 ·Rθ

= 3+3n−1

2 ·Rθ

¤
We conclude this subsection with two more definitions that will prove to be

helpful in the proofs of the main convergence theorems.

Definition 3.2.3. For integers n ≥ 3 the length of g(
−−−→
TM2n), denoted by ln, is

defined to be ln = |−−−−−−→g(TM2n)|.
Recalling that we set the initial position vector of the turtle to be −→r0 = 〈0, 0〉,

we can use Proposition 3.2.2 to compute ln exactly.

ln =| −−−−−−→g(TM2n) |
=| −→r0 + 3−3n−1

2 ·Rθ · ~v0 |
=| 3−3n−1

2 ·Rθ · ~v0 |
= 3n−1−3

2

For the reader wondering why we define ln for n ≥ 3 only, note that it is precisely
the Thue-Morse turtle program of order 3 (that is, TM6) that corresponds to what
is commonly considered to be the initial configuration of the Koch Snowflake (see
Figure 1). Hence it makes sense to consider TM6 as our starting point. With this
in mind, we then define the scaling factor Sn of each iteration TMn as follows.

Definition 3.2.4. For n ≥ 3, the scaling factor Sn of TM2n is defined to be

Sn = l3/ln
= 3/ln
= 2

3n−2−1

3.3. The Polygon Map. Our next goal is to realize turtle programs (in particular
Thue-Morse turtle programs) as polygonal curves in the plane. Let S be a subset
of Σ∗R and let H(R2) be the set of nonempty compact subsets of R2. Equipped with
the homomorphism g : Σ∗R → R2, we can then define a map K[·] : S → H(R2) that
assigns a polygon to each word over S. As F. M. Dekking presents in [[4], p. 80],
define the polygon map K[·] on s ∈ S to be K[s] = {α·g(s) : 0 ≤ α ≤ 1}, and extend
the map to all words over S by requiring that K[V W ] = K[V ]∪ (g(V )¢K[W ]) for
any V, W ∈ S∗ where g(V ) ¢ K[W ] := g(V ) + π2 ◦ ψ(V ) ·K[W ].

As indicated above, there can be many different ways of realizing a turtle program
in the plane. As the examples below illustrate, the realization will depend on the
way we define S.
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Example 3.3.1. The most general polygon map is obtained by defining S = Σ∗. In
this case, Kturt : Σ∗ → R2 is the map one typically associates with turtle geometry.
That is, Kturt : Σ∗ → R2 assigns to each word w = a1a2a3...ak ∈ Σ∗ the trajectory
traversed by a turtle that follows each command ai ∈ {F, L}, in turn, starting with
a1 and finishing with an.

Example 3.3.2. Let Λ = {L4F 3L4, LF 3L}, and consider the polygon map Kks :
Λ∗ → H(R2). In light of Proposition 2.2.1, the polygon Kks[σ2n(L4F 3L4)] is the
nth stage of the Koch snowflake. Defining KS2n ≡ σ2n(L4F 3L4) and K2n =
1
3n Kks[KS2n], the Koch snowflake K can then be defined as the limit: limn→∞K2n.
Here the limit is taken over nonempty compact subsets of R2 under the Hausdorff
metric (see the next section).

Example 3.3.3. For all integers k ≥ 0, if Ω2k = {TM2k, TM2k} then the polygon
maps {K2k : Ω∗ → H(R2)} produce polygonal curves constructed out of the basic
component edges K2k[TM2k] and K2k[TM2k]. For example, the polygons K6[TM10]
and K8[TM10] are depicted in Figure 5 below. These polygon maps will play a
critical role in the proofs of the convergence theorems.

Figure 5. Left: K8[TM10] overlaying K0[TM10] = Kturt[TM10]
Right: K6[TM10] overlaying K0[TM10] = Kturt[TM10]

3.4. The Hausdorff Metric. The distance between two subsets of a metric space
is defined using the Hausdorff metric (see [2]). Given the complete metric space R2

under the Euclidean metric d and H(R2), the space of nonempty compact subsets
of R2, the Hausdorff distance between two points A,B ∈ H(R2) is defined by

h(A,B) = max{d(A,B), d(B,A)},
where d(A,B) is the Euclidean distance between two sets:

d(A,B) = max{d(x,B) : x ∈ A}.
Introducing the notation d(A,B)∨d(B, A) to denote max{d(A,B), d(B,A)}, we

get the following definition.

Definition 3.4.1. The Hausdorff distance between two sets A,B ∈ H(R2) is de-
fined to be h(A,B) = d(A,B) ∨ d(B, A).

A particularly simple situation is the case where the two sets A and B are parallel
line segments. As Lemma 3.4.2 below indicates, in this case the Hausdorf distance
h(A,B) is computed easily using the (Euclidean) distances between the endpoints.

Lemma 3.4.2. If AB and CD are two parallel line segments in R2 with
−−→
AB and−−→

CD pointing towards the same direction, then h(AB, CD) = d(A,C) ∨ d(B, D).
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Proof. To compute the Hausdorff distance between two parallel line segments AB
and CD, we will consider two cases. In the first case, the projection of one line
segment onto the line containing the other is contained in the other line segment.
In the second case, the projection of one line segment is not contained in the other.
Without loss of generality, we can assume that the two cases are as depicted in
Figure 6.

h

A

C

B

D

A

C

B

D

h

A

C

B

D

A

C

B

D

Figure 6. Case i (left): The projection of one line segment is
contained in the other. Case ii (right): The projection of one line
segment is not contained in the other.

Case i: Assume that the projection of AB onto the line containing CD is con-
tained in CD (see Figure 5(left)). In this case,

d(AB, CD) = max{d(x, CD) : x ∈ AB}
= h

d(CD, AB) = max{d(x, AB) : x ∈ CD}
= d(A,C) ∨ d(B, D)

Since h is always less than or equal to |AC| and |BD|, h(AB, CD) = d(AB, CD)∨
d(CD, AB) = d(A,C) ∨ d(B, D).

Case ii: Now assume that the projection of one line segment is not contained in
the other line segment (see Figure 5(right)). Then

d(AB, CD) = max{d(x, CD) : x ∈ AB}
= d(A,C)

d(CD, AB) = max{d(x, AB) : x ∈ CD}
= d(B,D)

Hence h(AB, CD) = d(A,C) ∨ d(B, D) holds for the second case as well, and
this completes the proof of the lemma. ¤

Also of use in this paper is the following lemma which computes the Hausdorff
distance between the two polygons that result from applying two consecutive K2k

maps to the turtle programs TM2k+2 and TM2k+2.

Lemma 3.4.3. For k ≥ 3, h(K2k[TM2k+2],K2k+2[TM2k+2]) =
√

3
2 (lk + 3) and

h(K2k[TM2k+2],K2k+2[TM2k+2]) =
√

3
2 lk

Proof. As illustrated in Figure 7, K2k+2[TM2k+2] is the single line segment AE
while K2k[TM2k+2] is the polygonal curve consisting of the four line segments:
AB, BC, CD, and DE.

To compute h(K2k[TM2k+2],K2k+2[TM2k+2]), we need to compute the two dis-
tances d(K2k[TM2k+2], K2k+2[TM2k+2]) and d(K2k+2[TM2k+2], K2k[TM2k+2]).
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h1

h2

lk

lk +3lk +3

lk

A B

C

D E

Figure 7. The polygons K2k[TM2k+2] and K2k+2[TM2k+2]

d(K2k[TM2k+2],K2k+2[TM2k+2]) = max{d(x,K2k+2[TM2k+2]) : x ∈ K2k[TM2k+2]}
= h1

= sin(π/3)(lk + 3)

and

d(K2k+2[TM2k+2],K2k[TM2k+2]) = max{d(x,K2k[TM2k+2]) : x ∈ K2k+2[TM2k+2]}
= h2

= h1
2

We see then that h(K2k[TM2k+2],K2k+2[TM2k+2]) = h1 ∨ h2 = sin(π/3)(lk + 3).
That is, h(K2k[TM2k+2], K2k+2[TM2k+2]) =

√
3

2 (lk + 3).
To compute h(K2k[TM2k+2],K2k+2[TM2k+2]) we now refer to Figure 8. Much

like the previous situation, K2k+2[TM2k+2]) is the single line segment AB and
K2k[TM2k+2] is the union of four line segments: AB, BC, CD, and DE.

lk +3lk +3

lklk

A B

C

D E

Figure 8. The polygons K2k[TM2k+2] and K2k+2[TM2k+2]

A computation similar to that of the previous case shows that

h(K2k[TM2k+2], K2k+2[TM2k+2]) = sin(π/3)lk =
√

3
2

lk.

¤

Finally, we list several useful properties of the Hausdorff metric. Some are in-
cluded as standard exercises in textbooks (see, for example [2]), and the others
easily checked.

Property 3.4.4. For all A,B ∈ H(R2) and x ∈ R2, h(x + A, x + B) = h(A,B).

Property 3.4.5. For all A,B ∈ H(R2) and λ ∈ R, h(λA, λB) = λh(A,B).



WHEN THUE-MORSE MEETS KOCH 11

Property 3.4.6. Let R be a rotation matrix and A,B ∈ H(R2). Then h(R·A, R·B) =
h(A,B).

Property 3.4.7. For all A,B, C,D ∈ H(R2), h(A
⋃

B, C
⋃

D) ≤ h(A,C) ∨ h(B,D).

As the next lemma shows, Property 3.4.4 and Property 3.4.6 together yield a
fifth property involving the polygon maps K2k. This property will be useful in
proving the convergence theorems.

Lemma 3.4.8. For any w1, w2, w3 ∈ Σ∗R, h(g(w1) ¢ K2k[w2], g(w1) ¢ K2k[w3]) =
h(K2k[w2],K2k[w3]).

Proof. Let w1, w2, w3 ∈ Σ∗R, and let π2 ◦ ψ(w1) = R. Then

h(g(w1) ¢ K2k[w2], g(w1) ¢ K2k[w3]) = h(g(w1) + RK2k[w2], g(w1) + RK2k[w3])
= h(RK2k[w2], RK2k[w3]) (3.4.4)
= h(K2k[w2],K2k[w3]) (3.4.6)

¤

4. Preliminary Convergence Results

In this section, we examine the polygons K2k[TM2n] more closely. In particular,
we start by considering the difference between two consecutive polygon maps K2k

and K2k+2 applied to a given Thue-Morse program TM2n (and scaled down by Sn).
As the following result shows, when k is large the difference is small.

Proposition 4.0.9. Let h be the Hausdorff metric on H(R2) and 3 ≤ k < n. Then
given any ε > 0, there exists N ∈ N sufficiently large such that

h(SnK2k[TM2n], SnK2k+2[TM2n]) < ε

for all n ≥ N.

Proof. Consider TM2n =
∏4n−k−1

i=1 vi, where vi ∈ {TM2k+2, TM2k+2}. Then

K2k[TM2n] =
⋃4n−k−1

i=1 (g(v1v2...vi−1) ¢ K2k[vi]). (Note: In the case where i = 1,
g(v1v2...vi−1) = g(ε).)

By Property 3.4.5 we find that

h(SnK2k[TM2n], SnK2k+2[TM2n]) ≤ Sn · h(K2k[TM2n],K2k+2[TM2n]) (∗)
and because each of the polygons K2k[TM2n] and K2k+2[TM2n] is a union of edges
of the form g(v1v2...vi−1) ¢ K2k[vi] and g(v1v2...vi−1) ¢ K2k+2[vi] respectively, we
can apply Property 3.4.7 to show that the right-hand side of (∗) is bounded above
by

Sn ·max4n−k−1

i=1 {h(g(v1v2...vi−1) ¢ K2k[vi]), g(v1v2...vi−1) ¢ K2k+2[vi])}.
Hence, by Lemma 3.4.8, we conclude that h(K2k[TM2n], K2k+2[TM2n]) ≤ Sn ·

max4n−k−1

i=1 {h(K2k[vi],K2k+2[vi])}, and since vi ∈ {TM2k+2, TM2k+2} for all i,
each h(K2k[vi], K2k+2[vi]) is bounded above by the maximum of h(K2k[TM2k+2],
K2k+2[TM2k+2]) and h(K2k[TM2k+2], K2k+2[TM2k+2]). Applying Lemma 3.4.3
then yields

h(SnK2k[TM2n], SnK2k+2[TM2n]) ≤ max{Sn sin(π/3)(lk + 3), Sn sin(π/3)lk}
≤ Sn sin(π/3)(lk + 3)
≤ 2

3n−2−1 · 3k−1+3
2 ·

√
3

2

≤ 3k−1+3
3n−2−1 ·

√
3

2
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Since k is fixed, it is easy to see now that we can make 3k−1+3
3n−2−1 ·

√
3

2 arbitrarily
small by making n sufficiently large. ¤

The previous theorem still holds if k = n
2 for even n or k = n+1

2 for odd n. When

n is even we find that h(SnK2k[TM2n], SnK2k+2[TM2n]) ≤ 3
n
2 −1+3

3n−2−1 ·
√

3
2 . The case

for odd n is similar. However, the theorem does not hold any more if k = n −m
for any finite m, because in this case we get h(SnK2k[TM2n], SnK2k+2[TM2n]) ≤
3n−m−1+3

3n−2−1 ·
√

3
2 ≤ 31−m·

√
3

2 which does not approach 0 with increasing n. This implies
that k can be chosen to be arbitrarily large because as n approaches infinity, n

2
approaches infinity too. Nevertheless, k cannot be arbitrarily close to n. Moreover,
we can generalize the proposition for any two finite K2k maps, not necessarily the
consecutive ones.

Proposition 4.0.10. Let h be the Hausdorff metric on H(R2) and j, k ∈ N satis-
fying 3 ≤ j ≤ k. Then given any ε > 0, there exists N ∈ N sufficiently large such
that

h(SnK2j [TM2n], SnK2k[TM2n]) < ε

for all n ≥ N.

Proof. The proof starts out similarly to that of the previous result. Suppose
TM2n =

∏4n−k

i=1 vi where vi ∈ {TM2k, TM2k}. Once again apply Properties 3.4.5,
3.4.7 and Lemma 3.4.8 to conclude

h(SnK2j [TM2n], SnK2k[TM2n]) ≤ Sn ·max4n−k

i=1 {h(K2j [vi],K2k[vi])}
Since vi ∈ {TM2k, TM2k}, h(K2j [vi],K2k[vi]) is bounded above by

max{h(K2j [TM2k],K2k[TM2k]), h(K2j [TM2k],K2k[TM2k])}.
The triangle inequality then yields

h(K2j [TM2k],K2k[TM2k]) ≤
k−1∑

m=j

h(K2m[TM2k],K2m+2[TM2k])

and

h(K2j [TM2k],K2k[TM2k]) ≤
k−1∑

m=j

h(K2m[TM2k],K2m+2[TM2k]).

Next note that for each j ≤ m ≤ k − 1, TM2k and TM2k can both be rewrit-
ten as products: TM2k =

∏4k−m−1

i=1 wm,i and TM2k =
∏4k−m−1

i=1 wm,i, where wm,i ∈
{TM2m+2, TM2m+2}. Therefore h(K2m[TM2k], K2m+2[TM2k]) and h(K2m[TM2k],
K2m+2[TM2k]) are both bounded above by

max{h(K2m[TM2m+2],K2m+2[TM2m+2]), h(K2m[TM2m+2],K2m+2[TM2m+2])}.
We conclude that h(K2j [TM2n],K2k[TM2n]) is bounded above by

k−1∑

m=j

max{h(K2m[TM2m+2],K2m+2[TM2m+2])), h(K2m[TM2m+2],K2m+2[TM2m+2])}.
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Finally, by Lemma 3.4.3, h(K2m[TM2m+2],K2m+2[TM2m+2]) = sin(π/3)(lm + 3)
and h(K2m[TM2m+2],K2m+2[TM2m+2]) = sin(π/3)lm. Hence

h(SnK2j [TM2n], SnK2k[TM2n]) ≤ Sn · h(K2j [TM2n],K2k[TM2n])
≤ Sn ·

∑k−1
m=j sin(π/3)(lm + 3)

≤ Sn · (k − j) sin(π/3)(lk−1 + 3)
≤ 3k−2+3

3n−2−1 · (k − j) ·
√

3
2

Clearly, for finite j and k, h(SnK2j [TM2n], SnK2k[TM2n]) approaches 0 as n
approaches infinity. ¤

Remark 4.0.11. The previous two propositions make up a key component to the
proof of the convergence of the polygonal Thue-Morse curves {SnK2k(TM2n)}∞n=3.
Furthermore, if {SnK2k(TM2n)}∞n=3 converges to K(TM) ∈ H(R2) in the Haus-
dorff metric, then the propositions tell us that the set K(TM) does not depend on
our choice of k. That is, we can use the polygon map K2k : Σ∗R → H(R2) of our
choice. This is a very powerful result.

We prove one final lemma before presenting our main results.

Lemma 4.0.12. For all w1, w2, v1, v2 ∈ Σ∗R satisfying π2 ◦ ψ(w1) = π2 ◦ ψ(v1),

d(g(w1) ¢ g(w2), g(v1) ¢ g(v2)) ≤ d(g(w1), g(v1)) + d(g(w2), g(v2))

Proof. Suppose π2 ◦ ψ(w1) = π2 ◦ ψ(v1) = R. Then

d(g(w1) ¢ g(w2), g(v1) ¢ g(v2)) = d(g(w1) + R · g(w2), g(v1) + R · g(v2))
=| (−−−−−−−−−−−−→g(w1) + R · g(w2))− (

−−−−−−−−−−−−→
g(v1) + R · g(v2)) |

=| (−−−→g(w1)−
−−−→
g(v1)) + (

−−−−−−→
R · g(w2)−

−−−−−→
R · g(v2)) |

≤| (−−−→g(w1)−
−−−→
g(v1)) | + | (−−−−−−→R · g(w2)−

−−−−−→
R · g(v2)) |

≤ d(g(w1), g(v1)) + d(R · g(w2), R · g(v2))
≤ d(g(w1), g(v1)) + d(g(w2), g(v2))

¤

5. The Main Results

Theorem 5.0.13. (Convergence Theorem I) For positive integer n ≥ 8, let

kn =
{

n
2 if n is even
n+1

2 if n is odd

Then the sequence of compact sets {SnK2kn [TM2n]}∞n=8 converges in the Hausdorff
metric.

Proof. In order to prove convergence, we show that the sequence is Cauchy. That
is, we prove that for each ε > 0 there exists a natural number N such that for all
n,m > N , h(SnK2kn [TM2n], SmK2kn [TM2m]) < ε. Without loss of generality, we
will assume that n ≤ m. Choosing N1, N2 ∈ N to be such that 324 · ( 2

3 )N1 < ε
2

and 2
√

3 · ( 1
3 )

N2
4 < ε

2 , we let N = max{N1, N2}. By the triangle inequality and the
symmetry of h, we get that h(SnK2kn [TM2n], SmK2kn [TM2m]) is bounded above
by

h(SnK2kn [TM2n], SmK2km [TM2m]) + h(SmK2km [TM2m], SmK2kn [TM2m]).
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By triangle inequality again, the left hand side of the summand is bounded above
by

m−1∑

i=n

h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]).

We will show next that each term h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) in the
above sum is bounded above by 6·2i

3i−2−1 . Then when i ≥ 3 we have 1
3i−2−1 < 2

3i−2 ,
and therefore, h(SiK2ki

[TM2i], Si+1K2ki+2[TM2i+2]) < 108 · ( 2
3 )i.

To prove h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) < 6·2i

3i−2−1 , suppose TM2i =
∏4i−ki

j=1 vj and TM2i+2 =
∏4i−ki

j=1 wj where vj ∈ {TM2ki , TM2ki
} and wj ∈ {TM2ki+2, TM2ki+2}.

Then K2ki
[TM2i] =

⋃4i−ki

j=1 (g(v1v2...vj−1)¢K2ki
[vj ]) and K2ki+2[TM2i+2] =

⋃4i−ki

j=1 (g(w1w2...wj−1)¢
K2ki+2[wj ]). By Property 3.4.7 h(SiK2ki

[TM2i], Si+1K2ki+2[TM2i+2]) is equal to

max4i−ki

j=1 {h(Si(g(v1v2...vj−1) ¢ K2ki
[vj ]), Si+1(g(w1w2...wj−1) ¢ K2ki+2[wj ]))}.

Next note that K2ki
and K2ki+2 are two consecutive polygon maps and wj =

σ2(vj). Hence g(v1v2...vj−1)¢K2ki [vj ] and g(w1w2...wj−1)¢K2ki+2[wj ] are parallel
line segments, and by Lemma 3.4.2 we can compute h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2])
by computing the distances between the endpoints of edges. In particular,
h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) equals

max4i−ki

j=1 {d(Si(g(v1v2...vj−1) ¢ g(vj)), Si+1(g(w1w2...wj−1) ¢ g(wj)))}.
Since π2 ◦ ψ(vj) = π2 ◦ ψ(wj) = R2

θ for all j and π2 ◦ ψ is a homomorphism,
π2 ◦ ψ(v1v2...vj−1) = π2 ◦ ψ(w1w2...wj−1). By Lemma 4.0.12, we conclude then
that h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) is bounded above by

max4i−ki

j=1 {d(Sig(v1v2...vj−1), Si+1g(w1w2...wj−1) + d(Sig(vj), Si+1g(wj))}.
Moreover, recall that g : Σ∗R → R2 is a homomorphism, so g(v1v2...vj−1) = g(v1) ¢
g(v2) ¢ ... ¢ g(vj−1). Hence we can continue to apply Lemma 4.0.12:

h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2])
≤ max4i−ki

j=1 {d(Si(g(v1v2...vj−2) ¢ g(vj−1)), Si+1(g(w1w2...wj−2) ¢ g(wj−1)))
+d(Sig(vj), Si+1g(wj))}

≤ max4i−ki

j=1 {d(Sig(v1v2...vj−2), Si+1g(w1w2...wj−2))+d(Sig(vj−1), Si+1g(wj−1))
+d(Sig(vj), Si+1g(wj))}

≤ max4i−ki

j=1 {∑j
l=1 d(Sig(vl), Si+1g(wl))}

≤ ∑4i−ki

l=1 {d(Sig(vl), Si+1g(wl))}.
Therefore, it suffices now to find an upper bound for d(Sig(vl), Si+1g(wl)). We

consider two cases:
Case i: d(Sig(vl), Si+1g(wl)) = d(Sig(TM2ki), Si+1g(TM2ki+2)). In this case, we
employ Proposition 3.2.2 to compute:

d(Sig(TM2ki), Si+1g(TM2ki+2)) =| −−−−−−−−→Sig(TM2ki)−
−−−−−−−−−−−−→
Si+1g(TM2ki+2) |

=| 2
3i−2−1 · 3−3ki−1

2 ·Rθ · ~v0 − 2
3i−1−1 · 3−3ki

2 ·Rθ · ~v0 |
=| Rθ · ~v0 | · | 2

3i−2−1 · 3−3ki−1

2 − 2
3i−1−1 · 3−3ki

2 · |
= 2·(3i−1−3ki−1)

(3i−2−1)(3i−1−1) ,
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and since ki ≥ 3, we have
2·(3i−1−3ki−1)

(3i−2−1)(3i−1−1) ≤ 2·(3i−1−30)
(3i−2−1)(3i−1−1) ≤ 2

3i−2−1 .

Case ii: d(Sig(vl), Si+1g(wl)) = d(Sig(TM2ki), Si+1g(TM2ki+2)). We handle the
second case in a similar way. Once again, apply Proposition 3.2.2 to compute:

d(Sig(TM2ki
), Si+1g(TM2ki+2)) =|

−−−−−−−−→
Sig(TM2ki

)−
−−−−−−−−−−−−→
Si+1g(TM2ki+2) |

=| 2
3i−2−1 · 3+3ki−1

2 ·Rθ · v̂0 − 2
3i−1−1 · 3+3ki

2 ·Rθ · v̂0 |
=| Rθ · ~v0 | · | 2

3i−2−1 · 3+3ki−1

2 − 2
3i−1−1 · 3+3ki

2 · |
= 2·(3i−1+3ki−1)

(3i−2−1)(3i−1−1) .

Since ki < i, we have
2·(3i−1+3ki−1)

(3i−2−1)(3i−1−1) ≤ 2·(3i−1+3i−1)
(3i−2−1)(3i−1−1) ≤ 4·(3i−1)

(3i−2−1)(3i−1−1) ,

and for i ≥ 2, 3i−1

3i−1−1 ≤ 3
2 . Hence, for i ≥ 2

2·(3i−1+3ki−1)
(3i−2−1)(3i−1−1) ≤ 6

(3i−2−1) ,

and 6
(3i−2−1) is an upper bound.

Taking the larger of the two upper bounds, we see then that 6
(3i−2−1) serves as

an upper bound for d(Sig(vl), Si+1g(wl)) in both cases, and we can return to our
computation...

h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) ≤ ∑4i−ki

l=1 d(Sig(vl), Si+1g(wl))
≤ 4i−ki · 6

(3i−2−1)

If i is even and ki = i
2 , then 4i−ki · 6

(3i−2−1) = 4
i
2 · 6

(3i−2−1) = 6·2i

(3i−2−1) , and
therefore

h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) ≤ 6 · 2i

(3i−2 − 1)
.

The case where i is odd is similar, and hence h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) <
108 · ( 2

3 )i. Thus

m−1∑

i=n

h(SiK2ki [TM2i], Si+1K2ki+2[TM2i+2]) <

m−1∑

i=n

108 · (2
3
)i

= 324 · [(2
3
)n − (

2
3
)m]

< 324 · (2
3
)n

< 324 · (2
3
)N

<
ε

2

Now consider the right hand term of the summand. By Proposition 4.0.10,
h(SmK2km [TM2m], SmK2kn [TM2m]) is bounded above by 3km−2+3

3m−1 · (km−kn) ·
√

3
2 .

If m, n are both even, the bound is equal to 3
m
2 −2+3
3m−1 · m−n

2 ·
√

3
2 . Other cases are

similar, and because m < 3
m
4 (m ≥ 8), for m sufficiently large we have
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3
m
2 −2 + 3
3m − 1

· m− n

2
·
√

3
2

<
3

m
2 −2 + 3
3m − 1

·m ·
√

3
2

<
3

m
2 + 3

3m − 1
· 3m

4 ·
√

3
2

<
2 · 3 3m

4

3m − 1
·
√

3
2

<
4 · 3 3m

4

3m
·
√

3
2

= 2
√

3 · (1
3
)

m
4

< 2
√

3 · (1
3
)

N
4

<
ε

2

Therefore, we found a natural number N such that for all n,m > N ,

h(SnK2kn [TM2n], SmK2kn [TM2m])
≤ h(SnK2kn [TM2n], SmK2km [TM2m]) + h(SmK2km [TM2m], SmK2kn [TM2m])

<
ε

2
+

ε

2
= ε

We conclude that the sequence {SnK2kn [TM2n]}∞n=8 converges in the Hausdorff
metric, and this completes the proof of the theorem. ¤

Since (H(R2), h(·, ·)) is a complete metric space [2], we can conclude further that
{SnK2kn [TM2n]}∞n=5 converges to a compact set. As the next theorem will show,
this compact set is precisely the Koch snowflake K (as defined in Example 3.3.2).

Theorem 5.0.14. (Convergence Theorem II) For positive integer n ≥ 5, let

kn =
{

n
2 if n is even
n+1

2 if n is odd

Then the sequence {SnK2kn [TM2n]}∞n=5 converges to K in the Hausdorff metric.

Proof. We prove the convergence by showing thatH(SnK2kn [TM2n], 1
3n−kn

K2n−2kn)

approaches 0 as n approaches infinity. Consider TM2n =
∏4n−kn

i=1 vi, where vi ∈
{TM2kn , TM2kn} and KS2n−2kn =

∏4n−kn

i=1 yi, where yi ∈ {L4F 3L4, LF 3L}. Then

K2kn [TM2n] =
⋃4n−kn

i=1 (g(v1v2...vi−1)¢K2kn [vi]) andK2n−2kn =
⋃4n−kn

i=1 (g(y1y2...yi−1)
¢Kks[yi]) (For the definition of Kks map, see Example 3.3.2). Since π2 ◦ Φ(vi) =
π2 ◦Φ(yi) = R2

θ for all i, the corresponding edges of K2kn [TM2n] and K2n−2kn (that
is, vi and yi) are parallel line segments. Hence, similar to the proof of Theorem
5.0.13, we apply Property 3.4.7, Lemma 3.4.2, and Lemma 4.0.12 (multiple times)
to conclude that

h(SnK2kn [TM2n], 1
3n−kn

K2n−2kn)
≤ max4n−kn

i=1 {h(Sn(g(v1v2...vi−1) ¢ K2kn [vi]), 1
3n−kn

(g(y1y2...yi−1) ¢ Kks[yi]))}
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≤ max4n−kn

i=1 {h(Sn(g(v1v2...vi−1) ¢ g(vi)), 1
3n−kn

(g(y1y2...yi−1) ¢ g(yi)))}
≤ max4n−kn

i=1 {∑i
j=1 d(Sng[vj ], 1

3n−kn
g[yj ])}

Hence it suffices to compute d(SnK2kn [vj ], 1
3n−kn

Kks[yj ]). Once again, there are
two cases to consider.
Case i: If vj = TM2kn and yj = L4F 3L4, then

d(Sng(vj), 1
3n−kn

g(yj)) = d(Sng(TM2kn
), 1

3n−kn
g(L4F 3L4))

=| −−−−−−−−−→Sng(TM2kn
)−−−−−−−−−−−−−→1

3n−kn
g(L4F 3L4) |

=| 2
3n−2−1 · 3−3kn−1

2 ·Rθ · v̂0 − 1
3n−kn

· (−3) ·Rθ · v̂0 |
=| Rθ · v̂0 | · | 2

3n−2−1 · 3−3kn−1

2 + 1
3n−kn−1 |

= 3(3n−kn−1)
3n−kn ·(3n−2−1)

≤ 3
(3n−2−1)

Case ii: In the second case, vj = TM2kn
and yj = LF 3L. Then

d(Sng(vj), 1
3n−kn

g(yj)) = d(Sng(TM2kn
), 1

3n−kn
g(LF 3L))

=|
−−−−−−−−−→
Sng(TM2kn)−−−−−−−−−−−→1

3n−kn
g(LF 3L) |

=| 2
3n−2−1 · 3+3kn−1

2 ·Rθ · v̂0 − 1
3n−kn

· 3 ·Rθ · v̂0 |
=| Rθ · v̂0 | · | 2

3n−2−1 · 3+3kn−1

2 − 1
3n−kn−1 |

= 3(3n−kn+1)
3n−kn ·(3n−2−1)

≤ 3(3n−kn+3n−kn )
3n−kn ·(3n−2−1)

≤ 6
(3n−2−1)

In either case, d(Sng(vj), 1
3n−kn

g(yj)) ≤ 6
(3n−2−1) , and therefore

h(SnK2kn [TM2n], 1
3n−kn

K2n−2kn) ≤ max4n−kn

i=1 {∑i
j=1 d(Sng[vj ], 1

3n−kn
g[yj ])}

≤ ∑4n−kn

j=1 d(Sng[vj ], 1
3n−kn

g[yj ])
≤ 4n−kn · 6

(3n−2−1)

If n is even, then kn = n
2 , and h(SnK2kn [TM2n], 1

3n−kn
K2n−2kn) ≤ 6·2n

(3n−2−1) .

Clearly, we can make 6·2n

(3n−2−1) arbitrarily small by increasing n, and the case where
n is odd is similar. We conclude then that {SnK2kn [TM2n]} and {K2n−2kn} con-
verge to the same compact set in the Hausdorff metric. That is, {SnK2kn [TM2n]}
converges to K. ¤

Hence, by using sufficiently coarse polygon maps, we see that the Thue-Morse
sequence {TM2n}n≥3 does indeed encode the Koch snowflake.

6. A Generalization

In previous sections of this paper, we have focused primarily on the Thue-Morse
turtle sequence. At this point, we will broaden our focus somewhat by examin-
ing what we consider to be generalized Thue-Morse turtle sequences. To be more
concise, if w,w′ ∈ Σ∗R and σ is the same substitution map defined in the introduc-
tion, then σ2 defines the sequence of turtle programs: {σ2n(w)}n≥1. A generalized
Thue-Morse sequence is defined to be the limit limn→∞ σ2n(w). A natural question
to ask next is:
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Which w, w′ ∈ Σ∗R generate turtle programs {σ2n(w)}n≥k that en-
code turtle trajectories converging to the Koch snowflake?

To answer this question, we first observe that if {σ2n(w)}n≥k encodes the Koch
snowflake, then the replacements w → σ2(w) and w′ → σ2(w′) should reflect the
replacement rule used to define the Koch snowflake. Referring to Figure 9 below,
we see that this occurs when w and w′ satisfy the following three properties:

(1)
−−→
g(w) and

−−−→
g(w2) form two sides of an equilateral triangle, meaning that

|−−→g(w)| = |−−−→g(w2)|. The similar statement must hold true for w′.
(2)

−−−−−−→
g(ww′w′) = c1

−−→
g(w) for some real number c1 > 1

(3)
−−−−−−−→
g(ww′w′w) = c2

−−→
g(w) for some real number c2 > c1 > 1

x

y

g(w)

g(w )

g(w )

g(w)

x

y

g(w)

g(w )

g(w )

g(w)

Figure 9. The replacement structure corresponding to σ2(w)

It is not difficult to characterize the words w and w′ that satisfy these properties.
As it turns out, w and w′ will have to be such that |w|L = |w′|L mod 6 and

−−→
g(w)

and
−−−→
g(w′) lay in the same line but in the opposite direction. We will prove two

lemmas before establishing this result.

Lemma 6.0.15. If w ∈ Σ∗R with |w|L = m, then |−−→g(w)| = |−−−→g(w2)| if and only if
m = ±2 mod 6.

Proof. Assume π1 ◦ ψ(w) = M and |w|L = m. Then π1 ◦ ψ(w2) = M + Rm
θ M =

(I + Rm
θ )M . Observe that |−−→g(w)| = |π1 ◦ ψ(w) · v̂0| =

√
detM and |g(w2)| =√

det(I + Rm
θ )
√

detM . Hence |−−→g(w)| = |−−−→g(w2)| if and only if det(I + Rm
θ ) = 1.

A simple calculation then shows that det(I + Rm
θ ) = 1 precisely when m = ±2

mod 6. ¤
Hence property (1) forces |w|L and |w′|L to be congruent to either 2 or 4 modulo

6. Assuming that properties (2) and (3) hold as well, we can conclude further that
|w|L = |w′|L mod 6.

Lemma 6.0.16. If w, w′ ∈ Σ∗R with |w|L = m and |w′|L = n and {w,w′} satisfy
properties (1), (2), and (3) above, then m = n = ±2 mod 6.

Proof. If w and w′ satisfy properties (1), (2), and (3), and |w|L = m and |w′|L = n,
then −−−−−−−→

g(ww′w′w) =
−−−−−−→
g(ww′w′) + Rm+2n

θ

−−→
g(w)

= c1

−−→
g(w) + Rm+2n

θ

−−→
g(w)
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Since
−−−−−−−→
g(ww′w′w) = c2

−−→
g(w), we see then that Rm+2n

θ

−−→
g(w) = (c2−c1)

−−→
g(w), and hence

Rm+2n
θ = (c2 − c1)I is a scalar matrix. Since c2 > c1, we conclude that Rm+2n

θ is a
positive scalar matrix, and therefore, Rm+2n

θ = I. Equivalently, m+2n = 0 mod 6,
and since m and n are congruent to ±2 mod 6 (by Lemma 6.0.15), we conclude
that m = n mod 6. ¤

Note that the above proof actually shows that c2 depends on c1; in fact, c2 =
1 + c1. We are now ready to complete our characterization of w and w′.

Theorem 6.0.17. Two words w and w′ in Σ∗R satisfy the three properties:

(1) |−−→g(w)| = |−−−→g(w2)| and |−−−→g(w′)| = |−−−−−→g((w′)2)|.
(2)

−−−−−−→
g(ww′w′) = c1

−−→
g(w) for some real number c1 > 1

(3)
−−−−−−−→
g(ww′w′w) = c2

−−→
g(w) for some real number c2 > c1 > 1

if and only if |w|L = |w′|L mod 6, and
−−→
g(w) and

−−−→
g(w′) lay in the same line but in

the opposite direction.

Proof. Assume w and w′ in Σ∗R satisfy properties (1), (2), and (3). If |w|L = m and
|w′|L = n, then ψ(w) = (M, Rm

θ ) and ψ(w′) = (M ′, Rn
θ ) for some M, M ′ ∈ M2(R),

and −−−−−−→
g(ww′w′) = (M + Rm

θ M ′ + Rm+n
θ M ′) · v̂0

= (M + (Rm
θ + Rm+n

θ )M ′) · v̂0

=
−−→
g(w) + (Rm

θ + Rm+n
θ )

−−−→
g(w′).

Since
−−−−−−→
g(ww′w′) = c1

−−→
g(w), (c1 − 1)

−−→
g(w) = (Rm

θ + Rm+n
θ )

−−−→
g(w′), and by the previous

lemma, m = n = ±2 mod 6. Hence Rm
θ + Rm+n

θ = Rm
θ + R2m

θ = −I, and
(c1 − 1)

−−→
g(w) = −−−−→g(w′). Therefore,

−−→
g(w) = − 1

(c1−1)

−−−→
g(w′), and since c1 > 1, we

conclude that
−−→
g(w) and

−−−→
g(w′) lay in the same line but in the opposite direction.

Conversely, assume that
−−→
g(w) = −d

−−−→
g(w′) for some d > 0, and let m = |w|L =

|w′|L = ±2 mod 6. By Lemma 6.0.15, we already know that w and w′ satisfy the
first property. Next compute:

−−−−−−→
g(ww′w′) =

−−→
g(w) + Rm

θ

−−−→
g(w′) + R2m

θ

−−−→
g(w′)

= I − d(Rm
θ + R2m

θ )
−−→
g(w)

= (1 + d)
−−→
g(w)

Since d > 0, 1 + d > 1, and we see that w and w′ satisfy the second property. For
the third property, compute:

−−−−−−−→
g(ww′w′w) =

−−−−−−→
g(ww′w′) + R3m

θ

−−→
g(w)

= (1 + d)
−−→
g(w) +

−−→
g(w)

= (2 + d)
−−→
g(w)

Clearly, 2 + d > 1 + d > 1, and hence w and w′ satisfy property (3) as well. ¤

In light of this characterization of w and w′, it is interesting to revisit the
situation where w = TM2n and w′ = TM2n, with n ≥ 3. Indeed, one can
check that |TM2n|L = |TM2n|L = 22n−1 = 2 mod 6, and Proposition 3.2.2 en-

sures that
−−−−−−→
g(TM2n) and

−−−−−−→
g(TM2n) have opposite directions when n ≥ 3. Hence
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{TM2n, TM2n} satisfy our characterization – as we would expect. As the next the-
orem illustrates, we could have established the same results without dealing with
an arbitrary n. In particular, proving that TM6 satisfies the two criteria would
have been enough.

Theorem 6.0.18. If w and w′ are two words in
∑∗
R satisfying the properties

(1) |w|L = |w′|L = ±2 mod 6
(2)

−−→
g(w) and

−−−→
g(w′) lay along the same line but in the opposite direction,

then for all n ≥ 0, σ2n(w) and σ2n(w′) satisfy properties (1) and (2) as well.

Proof. Assuming {w, w′} and {σ2n(w), σ2n(w′)} satisfy the two properties, consider
the pair {σ2n+2(w), σ2n+2(w′)}. The proof that {σ2n+2(w), σ2n+2(w′)} satisfies
property (1) is similar to the proof of the first part of Lemma 3.2.1. If |σ2n(w)|L =
|σ2n(w′)|L = k = ±2 mod 6, then π2 ◦ ψ(σ2n(w)) = π2 ◦ ψ(σ2n(w′)) = Rk

θ , and

π2 ◦ ψ(σ2n+2(w)) = π2 ◦ ψ(σ2n(w)σ2n(w′)σ2n(w′)σ2n(w))
= (Rk

θ )4

= Rk
θ

Similarly, π2 ◦ ψ(σ2n+2(w′)) = Rk
θ , and we see that |σ2n+2(w)|L = |σ2n+2(w′)|L =

k = ±2 mod 6 as well.
Now assume that π1 ◦ ψ(σ2n(w)) = M and π1 ◦ ψ(σ2n(w′)) = M ′, and assume

that {σ2n(w), σ2n(w′)} satisfies property (2). Then M = cM ′ for some negative
real number c, and by Lemma 3.2.1,

g(σ2n+2(w)) = (2M −M ′) · v̂0 = (2c− 1)M ′ · v̂0

and

g(σ2n+2(w′)) = (2M ′ −M) · v̂0 = (2− c)M ′ · v̂0

Therefore, g(σ2n+2(w)) = 2c−1
2−c · g(σ2n+2(w′)). Since c is negative, 2c−1

2−c is negative

too. We see then that
−−−−−−−−→
g(σ2n+2(w)) and

−−−−−−−−−→
g(σ2n+2(w′)) are parallel, but point in the

opposite direction. That is, {σ2n+2(w), σ2n+2(w′)} satisfies property (2). ¤

Certainly, the formulation of the Koch snowflake given in section 2 (with w =
LF 3L and w′ = L4F 3L4) satisfies the characterization described above. To illus-
trate the results of Theorems 6.0.17 and 6.0.18, we close this section with a couple
of more interesting examples.

Example 6.0.19. If w = LFL5FLFL and w′ = L3FLF 2L4, then |w|L = |w′|L =
2 mod 6 and

−−→
g(w) = −−−−→g(w′). Below are the trajectories Kturt[σ2n(w)] for n = 3.

In the previous example, w and w′ represented edges of the same length. As the
next example illustrates, this is by no means necessary. In fact, ||−−→g(w)| − |−−−→g(w′)||
can be as large as we like.

Example 6.0.20. If w = LFL5FLFL and w′ = L3FLF 2L5FLF 2L4, then |w|L =
|w′|L = 2 mod 6 and

−−→
g(w) = −2

−−−→
g(w′). Below is the trajectory Kturt[σ2n(w)] for

n = 4.
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Figure 10. The polygon Kturt[σ6(w)], where w = LFL5FLFL
and w′ = L3FLF 2L4

Figure 11. The polygon Kturt[σ8(w)], where w = LFL5FLFL
and w′ = L3FLF 2L5FLF 2L4

7. Conclusion

In the previous section, we found that there are, in fact, many pairs {w, w′}
that encode the Koch snowflake under iteration of the substitution map σ2. One
simply needs to define w and w′ to be such that they satisfy properties (1) and (2)
of Theorem 6.0.18. It is worth noting, however, that in the original Thue-Morse
sequence, w′ is closely linked to w. In particular, w′ = w meaning that w′ is
obtained from w by changing all F ’s to L’s and all L’s to F ’s. This leads us to one
final question:

Is it possible to find a w ∈ Σ∗R not of the form TM2n or TM2n such
that the pair {w, w′} ={w, w} generates turtle programs {σ2n(w)}n≥k

that encode turtle trajectories converging to the Koch snowflake?
This, it appears, is a much more difficult question to answer. We have not been

able to find such a w, nor have we proved that one does not exist. What is clear,
however, is that such a w would have to meet a much more stringent set of criteria.
For example, by Lemma 6.0.15, it is not hard to see that w would have to satisfy
|w|L = |w|F = ±2 mod 6, implying that |w| = |w| = ±2 mod 6. If the Thue-
Morse turtle programs TM2n and TM2n were the only words of the form {w, w}
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encoding the Koch snowflake, then this would establish an even tighter link between
the Thue-Morse sequence and the Koch snowflake.
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